
Quantum Mechanics I
Week 6 (Solutions)

Spring Semester 2025

1 Spin precession in the Heisenberg representation
Consider the problem of spin precession already seen in the course. The Hamiltonian of
the system is:

Ĥ = −
(
eB

mc

)
Ŝz = ωŜz. (1.1)

A. We will solve this problem in the Heisenberg picture.

(a) First, calculate the exponential of the spin operators eiωSα , where α = x, y, z and ω
is a real constant. This operator will be important when working in the Heisenberg
picture.

The exponential of a matrix is given by its series expansion. Therefore, eiωŜα :

eiωŜα = ei
ℏω
2
σ̂α =

∞∑
n=0

(
iℏω

2
σ̂α
)n

n!

=

(∑
n even

+
∑
n odd

) (
iℏω

2
σ̂α
)n

n!

=
∞∑
n=0

(
iℏω

2
σ̂α
)2n

(2n)!
+

∞∑
n=0

(
iℏω

2
σ̂α
)2n+1

(2n+ 1)!

=
∞∑
n=0

(−1)n
(ℏω

2

)2n
(2n)!

1 + i
∞∑
n=0

(−1)n
(ℏω

2

)2n+1

(2n+ 1)!
σ̂α

= cos

(
ℏω
2

)
1 + i sin

(
ℏω
2

)
σ̂α.

The operator 1 is the identity matrix and we used σ̂2n
α = 1. We therefore find for

the Ŝx and Ŝy:

eiωŜx =

(
cos
(ℏω

2

)
i sin

(ℏω
2

)
i sin

(ℏω
2

)
cos
(ℏω

2

) ) , eiωŜy =

(
cos
(ℏω

2

)
sin
(ℏω

2

)
− sin

(ℏω
2

)
cos
(ℏω

2

)) , (1.2)

and for the Ŝz:
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eiωŜz =

(
cos
(ℏω

2

)
+ i sin

(ℏω
2

)
0

0 cos
(ℏω

2

)
− i sin

(ℏω
2

)) =

(
ei

ℏω
2 0

0 e−i ℏω
2

)
. (1.3)

(b) Using the Hamiltonian of Eq. (1.1), write the Heisenberg equations of motion for
the time-dependent operators Ŝx(t), Ŝy(t) and Ŝz(t).

The equation of motion for an operator ÂH(t) in the Heisenberg picture is given by

d

dt
ÂH(t) =

i

ℏ
[Ĥ, ÂH(t)] +

(
∂ÂS(t)

∂t

)
H

, (1.4)

where, in the case in which the operator ÂS in the Schrödinger picture depends
explicitly on time, the last quantity is given by(

∂ÂS(t)

∂t

)
H

= Û †(t)
∂ÂS(t)

∂t
Û(t), (1.5)

where we used the Heisenberg notation ÂH(t) = Û †(t)ÂS(t)Û(t), and the unitary
time evolution operator Û(t) = e−

i
ℏ Ĥt.

In particular, we note that the Hamiltonian Ĥ is the same in both pictures, as
[Ĥ, U(t)] = 0 and thus U †(t)ĤU(t) = Ĥ. For this reason, we use in the following
that [Ĥ, Â(t)] = [Ĥ(t), Â(t)] = Û †(t)[Ĥ, Â]Û(t).

In this case, the equations are therefore given by:

d

dt
Ŝx(t) =

i

ℏ
[Ĥ, Ŝx(t)] = − ieB

ℏmc
Û †(t)[Ŝz, Ŝx]Û(t)

=
eB

mc
Û †(t)ŜyÛ(t) =

eB

mc
Ŝy(t) = −ωŜy(t).

(1.6)

Similarly, we have

d

dt
Ŝy(t) = −eB

mc
Ŝx(t) = ωŜx(t),

d

dt
Ŝz(t) = 0. (1.7)

The second derivatives are given by

d2

dt2
Ŝx(t) = −ω2Ŝx(t),

d2

dt2
Ŝy(t) = −ω2Ŝy(t), (1.8)

which are differential equations of matrices.
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(c) Solve the differential equations from the previous question, to obtain Ŝx, Ŝy and Ŝz

as a function of time. Consider appropriate initial conditions.

These equations are solved for each matrix element individually. For Ŝx, we have

d2

dt2
(Ŝx(t))ij = −ω2(Ŝx(t))ij ⇒ (Ŝx(t))ij = Aij cos(ωt) +Bij sin(ωt). (1.9)

As initial conditions we use

Ŝx(t = 0) = Ŝx ⇒ Aij = (Ŝx)ij (1.10)

(
d

dt
Ŝx

)
(t = 0) = −ωŜy(t = 0) = −ωŜy ⇒ Bij = −(Ŝy)ij. (1.11)

Therefore,

(Ŝx(t))ij = cos(ωt)(Ŝx)ij − sin(ωt)(Ŝy)ij (1.12)

and in matrix notation

Ŝx(t) = cos(ωt)Ŝx − sin(ωt)Ŝy

=
ℏ
2

(
0 cos(ωt) + i sin(ωt)

cos(ωt)− i sin(ωt) 0

)
=

ℏ
2

(
0 eiωt

e−iωt 0

)
.

Similarly, we find

Ŝy(t) = cos(ωt)Ŝy + sin(ωt)Ŝx

=
ℏ
2

(
0 −i cos(ωt) + sin(ωt)

i cos(ωt) + sin(ωt) 0

)
=

ℏ
2

(
0 −ieiωt

ie−iωt 0

)
.

The equation for Ŝz(t) yields Sz(t) = Sz.

We can verify that Ŝα(t) = Û †(t)ŜαÛ(t), for all α ∈ {x, y, z}.

B. An electron is subjected to a uniform and time-independent magnetic field B = Bz.
At t = 0, the electron is an eigenstate of Ŝn ( ≡ Ŝ ·n) with eigenvalue ℏ

2
, i.e. |ψ⟩ = |Sn; +⟩.

Here n is a unit vector on the plane x−z, and can be parameterized by n = (sin θ, 0, cos θ).

(a) Obtain the probability of finding the electron in the state sx = ℏ
2

as a function of
time.

At the initial time t = 0, the electron is in the Eigenstate of the operator Ŝn =
ℏ
2
(sin θ σx+cos θ σz) with positive Eigenvalue ℏ

2
. After the last exercise on the Bloch
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sphere, we know that this Eigenstate is given by |ψ⟩ = cos θ
2
|0⟩+ sin θ

2
|1⟩, where |0⟩

and |1⟩ are Eigenstates of the σz operator.

The probability to find the state |Sx; +⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ at time t is

P =
∣∣∣⟨Sx; +|Û(t)|ψ⟩

∣∣∣2 = ∣∣∣∣ 1√
2
e−iωt/2 cos

θ

2
+

1√
2
eiωt/2 sin

θ

2

∣∣∣∣2 (1.13)

=
1

2

(
1 + cos

θ

2
sin

θ

2
(eiωt + e−iωt)

)
(1.14)

=
1

2
(1 + sin θ cosωt) . (1.15)

Note that this result can be obtained, equivalently, both in the Schrödinger and in
the Heisenberg pictures. In the Schrödinger picture, we interpret Û(t)|ψ⟩ = |ψ(t)⟩
as the quantum state of the system at time t. The time-dependent state can be
found by solving the Schrödinger equation

iℏ
∂|ψ(t)⟩
∂t

= Ĥ|ψ(t)⟩ (1.16)

with the initial conditions |ψ(0)⟩ = cos θ
2
|0⟩ + sin θ

2
|1⟩. The solution is |ψ(t)⟩ =

cos θ
2
e−iω

2
t|0⟩ + sin θ

2
ei

ω
2
t|1⟩. The probability is then computed from the absolute

square of the amplitude ⟨Sx; +|ψ(t)⟩, where |Sx; +⟩ is the eigenvector of the operator
Sx in the Schrödinger picture (which is time-independent).

In the Heisenberg picture, in contrast, we consider the state |ψ⟩ to be
time-independent. The probability is given by the square of the amplitude
⟨Sx(t); +|ψ⟩ where |Sx(t); +⟩ is the eigenvector of the Heisenberg operator Ŝx(t)
(which is time-dependent).

The two pictures give the same results. In fact, the operator Ŝx(t) can be written as
Û †(t)ŜxÛ(t). From this, it follows that the eigenvectors of the Heisenberg operator
are related to the corresponding eigenvectors in the Schrödinger picture as

|Sx(t); +⟩ = Û †(t)|Sx; +⟩ . (1.17)

Indeed,

Ŝx(t)|Sx(t); +⟩ = Û †(t)ŜxÛ(t)Û
†(t)|Sx; +⟩

= Û †(t)Ŝx|Sx; +⟩

=
ℏ
2
Û †(t)|Sx; +⟩ = ℏ

2
|Sx(t); +⟩ ,

(1.18)

so |Sx(t); +⟩ = Û †(t)
∣∣∣Ŝx; +

〉
is an eigenvector with eigenvalue +ℏ/2 of Ŝx(t).

Explicitly,

|Sx(t); +⟩ = 1√
2
(ei

ω
2
t|0⟩+ e−iω

2
t|1⟩) (1.19)
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Both the Schrödinger picture and the Heisenberg picture lead to the same
expression for the probability amplitude: ⟨Sx; +|ψ(t)⟩ = ⟨Sx; +|Û(t)|ψ⟩,
⟨Sx(t); +|ψ⟩ = ⟨Sx; +|(Û †(t))†|ψ⟩ = ⟨Sx; +|Û(t)|ψ⟩. (Note that the "bra"
corresponding to |Sx(t); +⟩ = Û †(t)|Sx; +⟩ is ⟨Sx(t); +| = ⟨Sx; +|(Û †(t))†.)

The equivalence between Schrödinger and Heisenberg pictures is completely general:
the two pictures are equivalent in any quantum-mechanical problem.

(b) Find the mean value of Ŝx as a function of time.

The time evolution of the operator Ŝx(t) is given by equation (12). Therefore, the
average value of the operator Ŝx(t) in the state |ψ⟩ at time t is

⟨ψ|Ŝx(t)|ψ⟩ =
ℏ
2

(
cos θ

2
sin θ

2

)( 0 eiωt

e−iωt 0

)(
cos θ

2

sin θ
2

)
(1.20)

=
ℏ
2
sin

θ

2
cos

θ

2
(eiωt + e−iωt) =

ℏ
2
sin θ cos(ωt). (1.21)

(c) Show that the solution corresponds to what you expect for the two extreme values
θ = 0 and θ = π

2
.

For θ = 0 the spin is aligned along the positive ẑ direction, there is no precession,
and the probability of measuring sx = ℏ

2
is 1

2
. Consequently, the expectation value

of Ŝx is zero.

For θ = π
2

the state is given by |Sx(t); +⟩. Therefore, we have P = 1 for t = 0 and
P = 0 for t = π

ω
. Furthermore, the expectation value of Ŝx is the classical precession

of a vector in the x− z plane.

2 The Ammonia molecule
The Ammonia molecule (NH3) is an interesting case of complex system that nonetheless
admits a relatively simple description in terms of a two level system. In the following we
will make the assumption that we have a single molecule at rest, that is spinning around
the axis formed by the triangular plane containing the Hydrogen atoms and the Nitrogen
atom. (see Figure 1 for a visualization of the pyramidal structure of this molecule). In
this situation, there are two equivalent positions for the Nitrogen atom: either in the
upper part of the Hydrogen plane or in the lower part.
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Figure 1: The ammonia molecule has two equivalent geometrical arrangements, one with
the nitrogen up (left) and one with the nitrogen down (right).

A. Restricting our attention to only these two possible geometric configurations, we are
going to associate two basis states |1〉 and |2〉, respectively to the up and down Nitrogen
configurations, thus

|1⟩ =
(
1
0

)
, |2⟩ =

(
0
1

)
. (2.1)

The Hamiltonian of the system is:

H =

(
E0 −A
−A E0

)
. (2.2)

The two configurations are equivalent, thus the average energy E0 of these two states is the
same. The off-diagonal element A is a real-valued, positive phenomenological constant,
and represents the process that transforms one state to the other. This follows from the
fact that in nature, both configurations are observed.

(a) Find the eigenvalues and eigenvectors of this Hamiltonian.

The energy eigenvalues are found by diagonalizing this matrix, solving

det

(
E0 − E −A
−A E0 − E

)
= (E0 − E)2 − A2 = 0 , (2.3)

which has the two solutions
E± = E0 ± A. (2.4)

The corresponding two eigen-kets are also found, expressed in the basis {|1⟩ , |2⟩}:

|+⟩ = 1√
2

(
1
−1

)
, |−⟩ = 1√

2

(
1
1

)
. (2.5)

(b) Find the matrix representation of the unitary time-evolution operator in the original
basis {|1⟩ , |2⟩}.
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The Hamiltonian we are considering is time-independent, thus the time evolution
operator is

Û(t) = e−
i
ℏ Ĥt. (2.6)

and we can also find its matrix elements in the |1⟩, |2⟩ basis. For example, we can
use the completeness of the energy eigen-kets:

⟨1|e−
i
ℏ Ĥt|1⟩ = ⟨1|e−

i
ℏ Ĥt|+⟩⟨+|1⟩+ ⟨1|e−

i
ℏ Ĥt|−⟩⟨−|1⟩

= e−
i
ℏE+t|⟨+|1⟩|2 + e−

i
ℏE−t|⟨−|1⟩|2

=
1

2
e−

i
ℏE0t

(
e−

i
ℏAt + e+

i
ℏAt
)

= e−
i
ℏE0t cos

(
At

ℏ

)
.

⟨1|e−
i
ℏ Ĥt|2⟩ = ⟨1|e−

i
ℏ Ĥt|+⟩⟨+|2⟩+ ⟨1|e−

i
ℏ Ĥt|−⟩⟨−|2⟩

=
1

2

(
e−

i
ℏE+t − e−

i
ℏE−t

)
=

1

2
e−

i
ℏE0t

(
e−

i
ℏAt − e+

i
ℏAt
)

= e−
i
ℏE0ti sin

(
At

ℏ

)
.

and similarly for the other two matrix elements. The full matrix representation is
therefore:

Û(t) = e−
i
ℏE0t

(
cos
(
At
ℏ

)
i sin

(
At
ℏ

)
i sin

(
At
ℏ

)
cos
(
At
ℏ

) ) . (2.7)

(c) Verify that this is indeed a unitary matrix.

For a unitary operator we require U †U = UU † = 1. Considering explicitly the
matrix product Û †(t)Û(t), it can be verified that it is equal to the identity operator.

(d) Given an arbitrary state at time t = 0, |ψ⟩ = c1(0) |1⟩ + c2(0) |2⟩, calculate the
coefficients c1(t), c2(t) for the time-dependent state |ψ(t)⟩ = c1(t) |1⟩ + c2(t) |2⟩ in
the Schrödinger representation. What are the coefficients for the initial conditions
c1(0) = 1, c2(0) = 0?

Now, for a generic state |ψ(t)⟩, we can determine the time evolution of the
amplitudes, i.e., c1(t) and c2(t), simply by applying the time-evolution matrix:
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(
c1(t)
c2(t)

)
= e−

i
ℏE0t

(
cos
(
At
ℏ

)
i sin

(
At
ℏ

)
i sin

(
At
ℏ

)
cos
(
At
ℏ

) )(c1(0)
c2(0)

)
(2.8)

= e−
i
ℏE0t

(
cos
(
At
ℏ

)
c1(0) + i sin

(
At
ℏ

)
c2(0)

i sin
(
At
ℏ

)
c1(0) + cos

(
At
ℏ

)
c2(0)

)
, (2.9)

which fully specifies the time evolution of the state. For example, if we started from
a state pointing in the up direction (i.e., c1(0) = 1 and c2(0) = 0), we would have

(
c1(t)
c2(t)

)
= e−

i
ℏE0t

(
cos
(
At
ℏ

)
i sin

(
At
ℏ

)
i sin

(
At
ℏ

)
cos
(
At
ℏ

) )(1
0

)
(2.10)

= e−
i
ℏE0t

(
cos
(
At
ℏ

)
i sin

(
At
ℏ

)) . (2.11)

(e) Suppose that at time t = 0 the molecule is known to be in the configuration |1⟩
(with nitrogen up). What are the probabilities of observing the configurations |1⟩
(nitrogen up) and |2⟩ of the Ammonia molecule as a function of time?

Using the result from the previous Question for c1(0) = 1, c2(0) = 0, the probability
of flipping into the down position is:

P (2) = |⟨2|Ψ(t)⟩|2 (2.12)

= |c2(t)|2 (2.13)

=

[
sin

(
At

ℏ

)]2
, (2.14)

whereas the probability of finding the Nitrogen up is:

P (1) = |⟨1|Ψ(t)⟩|2 (2.15)

= |c1(t)|2 (2.16)

=

[
cos

(
At

ℏ

)]2
. (2.17)

B. The charge distribution in the ammonia molecule is not spatially symmetric, specifically
the electronic charge tends to be closer to the nitrogen atom. As a consequence, there is
en effective electric dipole moment µ⃗E pointing from the nitrogen atom to the hydrogens
plane.
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Figure 2: The ammonia molecule in the presence of an electric field in the z direction.
The figure also shows that the dipole moment has two opposite directions in the states
|1⟩ and |2⟩.

The interaction energy is:
UE = −µ⃗E · E⃗ . (2.18)

We consider an electric field in the z direction, i.e. E⃗ = Ez ẑ.

(a) What is the new Hamiltonian of the system?

For an electric field in the z direction we have that the two states |1⟩ and |2⟩ must
have different energies (in one case the electric dipole is aligned with the electric
field, in the other case it is anti-aligned). The Hamiltonian then becomes

Ĥ =

(
E0 + µEEz −A

−A E0 − µEEz

)
. (2.19)

(b) What are the eigenvalues of the Hamiltonian H ′? Consider the case of weak electric
field µEEz ≪ E0. Hint: You may use

√
1 + ϵ ≃ 1 + ϵ/2.

The energy eigenvalues of this modified Hamiltonian can be found by solving

det

(
E0 + µEEz − E −A

−A E0 − µEEz − E

)
= (E0−E+µEEz)(E0−E−µEEz)−A2 = 0,

(2.20)

which has solutions
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E± = E0 ±
√

(µEEz)2 + A2. (2.21)

In the interesting case in which the electric field is small (i.e., µEEz ≪ E0), we can
approximate the eigenvalues as

E± ≃ E0 ±
(
A+

(µEEz)2

2A

)
, (2.22)

where we have used the expansion
√
1 + ϵ ≃ 1 + ϵ

2
.

(c) An interesting consequence of the presence of the electric field is that we can use
it to separate the two states |1⟩ and |2⟩ with a device similar to the Stern and
Gerlach device (with the important difference that here we are using the electric
field rather than the magnetic field to perform the separation). We consider a
spatially inhomogeneous electric field. Find the force acting on the molecule, when
the latter is in one of the two states we found earlier.

By considering a spatially inhomogeneous electric field, the force acting on the two
states is

Fz ≃ − ∂

∂z
E±,

= ∓(µE)
2

A

∂

∂z
Ez, (2.23)

thus at the output of the analyzer we measure the two states going in the lower and
upper sides of the detector, respectively.

This selection mechanism is used, for example, in the Ammonia maser, where the
molecules with the higher energy are filtered out thanks to an external electric field.
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